


Lesson 2. Longitudinal Waves

The graph of the sound wave in the previous lesson was a **transverse** wave, where the displacement moves perpendicular to the force. Transverse waves are only possible in solids (like a string) where molecules can exert a sideways force on others. The medium itself moves as a sinusoidal wave.

If the displacement (crests and troughs) of a wave caused by disrupting force F_1 moves in the same direction as that force, we have a **longitudinal wave**. Consider the air in a tube. The air molecules inside the tube are evenly distributed in a state of equilibrium.

	• • • • • • • • •	
 • • • • • • •	· · · · · · · · · · ·	• • • • • • • • • •
	• • • • • • • • • • •	
 	•••••	• • • • • • • • • •
 		• • • • • • • • • •

Blowing into the end of the tube will push the air molecules away, creating a low density area with fewer molecules in it called a **rarefaction**. The molecules that moved bump into the molecules in the rest of the tube, causing a high density area called a **compression**.

The compression then presses outward, creating compressions on either side of it and leaving a rarefaction where the compression was.

←	\rightarrow
•••••	• ••••••• • • • • • • • • • • • • • • •
	· · · · · · · · · · · · · · · · · · ·
	• • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • •
•••••	• • • • • • • • • • • • • • • • • • •

This process continues and the wave moves down the tube.

						•		-	-	-							•	-	-	-	•						•	-	-	-	-						
•		•		•							•	•			•								•		•		•					•		•		•	
•	•	•	•	•	•	٠	•	• •		•	•		•		•		• •	•	•	•	•	-	•	-	•	-		٠	•	• •	•			•		•	
•	•	•	•	•	•	٠	•	• •		•	•		•		•		• •	•	•	•	•		•		•			٠	•	• •	•		-	•		•	
•	•	•	•	•	•	٠	•	• •		•	•	•	•		•		• •	•	•	•			•		•			•	•	• •	•			•		•	
•	•	•	•	•	•							•	•	•	•						•	•	•	•	•	_							•	•	•	•	

Graphing the location of any molecule in the tube across time will result in a sinusoidal wave.